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SUMMARY 

This paper is concerned with the implementation of Lagrange-Galerkin finite element methods for the 
Navier-Stokes equations. A scheme is developed to efficiently handle unstructured meshes with local 
refinement, using a quad-tree-based algorithm for the geometric search. Several difficulties that arise in the 
construction of the right-hand side are discussed in detail and some useful tricks are proposed. 

The resulting method is tested on the lid-driven square cavity and the vortex shedding behind a 
rectangular cylinder and is found to give satisfactory agreement with previous works. A detailed analysis of 
the effect of time discretization is included. 
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1. INTRODUCTION 

Efficient solution of the incompressible Navier-Stokes equations is of primary importance in 
many applications of computational fluid dynamics. Several difficulties appear in the numerical 
treatment of these equations: indefinite and usually ill-conditioned matrices, convection-domin- 
ated diffusion of momentum at large Reynolds numbers, non-linearities coming from acceleration 
terms, and restrictions in the choice of interpolants for velocities and pressure so as to satisfy the 
well known Babuska-Brezzi (BB) condition (see e.g. References 1-3). 

In this paper we will focus our attention on the development of compact codes which 
appropriately handle the above-mentioned difficulties. For that purpose local mesh refinement is 
needed so that boundary layers can be resolved without introducing unnecessary degrees of 
freedom in regions where no steep gradients are expected. This leads to the use of unstructured 
meshes and we have chosen triangular elements to satisfy this requirement. However, it is by now 
established that Galerkin weighting gives oscillatory (wiggly) results at large Reynolds numbers 
even on very fine meshes, and a method with better stability properties is needed to make realistic 
problems tractable. 

We have adopted the Lagrange-Galerkin method (LGM),4-6 which satisfies this requirement. 
It is based upon a Lagrangian frame treatment of the material derivatives and also provides a 
robust way to deal with the non-linear convective terms via time evolution. Once the LGM is 
used, there remains to solve a Stokes problem at each time step together with the evaluation of the 
right-hand side. The computational implementation of this last item is essential for the resulting 
code to be competitive and will be given detailed explanation below. 
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The plan of this paper is as follows. In Section 2 we state the continuous problem and perform 
the time discretization that leads to the LGM. Section 3 is devoted to the finite element 
approximation of the resulting set of equations. At this point it is seen that exact integration of the 
right-hand side is not feasible and Section 4 includes a full description of the numerical scheme we 
implemented. Throughout Sections 3 and 4 some alternatives to the usual implementation of the 
LGM are developed. These are compared in the numerical examples of Section 5 and allow a 
comprehensive analysis of the effect of time discretization. Finally, some conclusions are drawn in 
Section 6. 

2. THE CONTINUOUS PROBLEM AND ITS DISCRETIZATION BY THE LGM 

The dynamical behaviour of an incompressible fluid of density p and viscosity p is governed by 
the Navier-Stokes equations 

as, as, p (T -+9.- J ;:;) -- ij [ .( S;TT+a,)]+$=h. 

a si 
ax, -=O, 

where 9' is the velocity field, p is the pressure and f represents the body forces. Appropriate 
conditions to solve (1) and (2) inside a bounded domain R are, for example, to specify the initial 
velocity field 

9 i ( X ,  O)= V i ( X ) ,  v x € n ,  (3) 
and boundary data, such as velocities or surface tractions, on all the boundary. 

velocity field along the path lines of the fluid particles, i.e. 
Now let us recall from elementary mechanics that the acceleration is the time derivative of the 

a si a s, s i ( X ,  t ) -  ~ ( L c ,  t ' )  a i (x ,  t ) = - ( x ,  t ) + Q j ( x ,  t ) - ( x ,  t)=lim t - t '  9 

at axj  t ' + f  

where g stands for the position at time t' of the particle that passes through x at time t. The 
LGM4-6 is based upon a natural approximation of equation (4). If we choose a time step At and 
define 

X ( X ) =  si(x, tn), ( 5 )  

where t ,  belongs to the chosen time discretization, we can approximate the acceleration terms by 
the one-step scheme 

This is the usual practice. We propose, alternatively, the second-order approximation (two-step 
scheme) 

where now 3 (resp. 5 )  stands for the position at time c , - ~  (resp. t n - 2 )  of the particle that passes 
through x at time t , .  
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Collecting the previous results and with implicit treatment of the other terms, we have 

P as: a q  apn P 
- @(x)-- p -+- +-(x)=f?(x)+- X-l(z), 
At Lj[ ( axj ax,)] ax, At 

a q  
ax, 
-- - 0. 

25 

(9) 

Expressions for the two-step scheme are analogous and will not be included for brevity. 
It should be noted that in the neighbourhood of inflow boundaries some of the zs will fall 

outside 0. This is due to the particle-following properties of the Lagrangian representation and 
must be considered during the spatial discretization. 

3. FINITE ELEMENT APPROXIMATION 

Equations (8) and (9) at each time tn give rise to a generalized Stokes problem which can receive 
standard finite element treatment. As stated in Section 1, we chose triangular elements for all 
fields so as to work with unstructured meshes. To be more specific, we implemented the 4 x P,/P, 
element ' *  (also called the Taylor-Hood element) consisting of four equal linear and conforming 
subtriangles inside the (also linear and conforming) pressure element (see Figure 1). 

We now perform the usual Galerkin finite element weighting of equations (8) and (9), obtaining 
the linear system that corresponds to the so-called 'direct' LGM (we have adopted the nomen- 
clature of Reference 7): 

&l _v" - = B", (10) 

(1 1) T vn- K V P -  -0, 
where _v" and p" are the velocity and pressure unknowns at step n and 

VELOCITY NODE 

t PRESSURE NODE 

Figure 1 .  4 x P,/P, mixed element 
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with G' (M') the Zth velocity (pressure) basis function. Also, 

where is the surface traction. The first integral in (14) is not tractable by analytical means, since 
@-'(a) is a quite general (far from polyhedral in most cases) continuous function. In the next 
section we describe a numerical scheme to approximate this integral. 

In what concerns the solution of the linear system (lo), ( 1 1 )  we used a conjugate gradient 
algorithm on pressure unknowns, with the preconditioner proposed by Cahouet and Chabard.' 

4. EVALUATION OF THE RIGHT-HAND SIDE 

It is known that the LGM, when integration is exact, leads to an unconditionally stable, 
conservative scheme. Morton et aL7 have shown that approximate evaluation of the right-hand 
side renders the scheme not only non-conservative but also conditionally unstable in most cases. 
They proposed a variant, called 'area weighting', that recovers unconditional stability but 
unfortunately does not work on unstructured meshes. Therefore we implemented non-exact 
integration by numerical quadrature, but care was taken in the selection of the quadrature points 
(see Section 4.3). In this way the positions must be found only for the finite number of points 
chosen for quadrature. 

4.1. Particle tracking 

The ordinary differential equation for the path line is 

dX 
- = & X ( t ) ,  dt t), 

with initial condition X(t,)=x. Once (15) is solved backwards in time, we get r = X ( t , - , )  and 
~ = X ( C , , - ~ ) .  However, since the velocity field at time t ,  is not known at the moment of 
constructing B", gin (15) must be replaced by some approximation, say 6 We implemented two 
possibilities. 

@$xed. Using the last computed value, B( -, t)  = 9- ' (*). 
fl inear in time. A linear estimate according to the last two values is 

- t - t , - ,  B(., t )  = 9"- ' ( a )  +- [ B - I ( - )  - 9- 2(-)], 
At 

for t ~ [ t , - ~ ,  t . ] .  The resulting ordinary differential equation for the path lines, 

dX 
-=B(X(t,, dt t ) ,  

was solved using a second-order predictor-corrector method with step At or a fraction of it, 
A t / N P .  We call substepping this option of subdividing the time step for particle tracking. Clearly, 
as NP-+oo, (17) is solved exactly. 

It must be noted that the numerical solution of (17) requires the evaluation of the velocity field 
at points not belonging to the mesh. This item is addressed in Section 4.2. Also, or g can lie 
outside the domain. This may be due to two situations. 
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tX 
\ 
\ 

Figure 2. Schematic diagram showing how substepping prevents from spuriously falling outside 52 

(a) x is near an inflow boundary. Generally, at inflow boundaries fully developed velocities are 
prescribed. In this case we assign to @-'(z) the prescribed value at  the point where the 
particle entered the domain. 

(b) Numerical errors in solving equation (17). Any time a path line leaves the domain, we apply 
substepping with NP= 16 to check if the cause was finite step integration of (17). In this way 
spurious exits near corners are removed (see Figure 2). 

4.2. Geometric search 

The LGM, as described above, leads to several evaluations of the velocity field at positions not 
coincident with any node of the mesh. This can be a very expensive operation if programmed with 
ingenuity. Below we describe three algorithms, of increasing complexity, that accomplish the 
geometric search function. 

The mesh element K that contains a given point X = (x, y )  is to be found in order to interpolate 
the velocity field at X from its values at the nodes of K. 

Algorithm N A  (naive) 

loop I =  1, number of elements in the mesh 
test if X belongs to I 
if this is the case, return K = I 
else continue 

end loop 

Algorithm SAM (structured auxiliary mesh)g. lo  

1. Preprocessing step (outside the temporal loop) 
(a) Construct an auxiliary mesh formed by rectangles and store the locations 

X i  ( i=  1, N X )  and Yi ( i =  1, N Y) of the dividing (vertical and horizontal respectively) 
lines. Rectangle Rij is [ X i ,  Xi+ x [ Yj ,  Yj+ '1. Of course, the auxiliary mesh must 
cover the domain (see Figure 3). 
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Xi Xi+l 

Figure 3. An example of the structured auxiliary mesh 

(b) For every R ,  construct a table Tij containing the indices of the original mesh 
elements that intersect R,. 

2. Search step (inside the temporal loop) 
(a) Find the rectangle R ,  that contains X (this is easily done since the auxiliary mesh is 

(b) Sweep table Tij to find the element K of the original mesh that contains X. 
structured). 

Algorithm Q T  (quad-tree structure)." This is a variant of the previous algorithm, replacing the 
auxiliary rectangular mesh by a quad-tree. The quad-tree leaves are automatically subdivided to 
account for local densifications of the original mesh. 

By inspection of the algorithms, Algorithm NA is clearly seen to be of highest order. In fact, 
since at least one search must be performed for each quadrature point, Algorithm NA is O ( N 2 ) .  
This order soon renders it prohibitive on increasing the number of degrees of freedom. 
Algorithms SAM and QT are similar, but QT handles meshes with local refinement more 
efficiently and is to be preferred. However, the best choice turned out to be a combination of SAM 
and QT, each rectangle of an auxiliary regular mesh being given a quad-tree structure. In Figure 4 
we show the resulting auxiliary structure for the vortex-shedding experiment to be described in 
Section 5. With this method the geometric search becomes inexpensive when compared to the 
solution of the linear system. 

4.3. Numerical quadrature 

We performed the first integral in equation (13) numerically by evaluating the integrand at a 
finite set of points and weighting this value according to the quadrature rule. We tested several 
quadratures for the simpler problem of advection4iffusion of a scalar quantity. We summarize 
the possible choices in Table I. 

An analysis of the effect of these quadratures on the LGM has been reported by Bermudez et 
al." for steady state (non-linear) problems. They find that all the formulae in Table I lead to 
acceptable solutions. However, our results on the pure advection of a cone have shown that 
formulae 2 and 3 are unstable for this transient problem. We do not include the full analysis here 
for brevity, but formulae 2 and 3 are excluded in the following because of this reason (formula 2 is 
also reported unstable in Reference 11). 
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Figur ‘e 4. Auxiliary structure automatically generated in the vortex-shedding experiment (corresponds to mesh 

Table I. Quadrature formulae 

RECTZ) 

Formula Points Triangular coordinates Multiplicity Weight Order 

1 3 (112, 112,O) 3 113 2 
2 3 ( W ,  116,213 3 113 2 
3 4 W, 1/3,1/3) 1 - 21/48 3 

4 6 (081685,009157,0~09157) 3 0 10995 17 4 
(1/5, 1/5,3/5 3 27 148 

(010810,0~44595,044595) 3 0.223381 6 

The above-mentioned tests for the pure transport of a cone also showed that formula 4 is not 
suitable, since it is four times more costly than formula 1 but brings no extraordinary improve- 
ment. 

We chose formula 1 and studied its behaviour in what concerns lack of conservativity and 
numerical diffusion. Both effects were seen to decrease with mesh refinement. The numerical 
diffusion increased with smaller time steps. This is in agreement with a term O(h2/At)  in the error 
bound for our and implies the existence of an optimal time step of order h. 

5. NUMERICAL TESTS; THE EFFECT OF THE TIME STEP 

In this section we discuss the performance of the above method on two well known test examples: 
the lid-driven square cavity (see Reference 3 for a comparison of several finite element methods) 
and the vortex shedding behind a rectangular cylinder (see Reference 14 for experimental data 
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and Reference 15 for numerical predictions). Our aim is to analyse the relative importance of the 
different mechanisms through which the time step enters the discretization procedure. These 
mechanisms are the following: 

(i) truncation of the limit for the material derivative (equation (6)) 
(ii) finite step size integration of equation (17) 
(iii) approximation of 9’ by @ in equation (15) 
(iv) implicit treatment of the remaining terns in equation (8). 

Throughout the previous sections, several alternatives to the standard implementation of the 
LGM were introduced. Our purpose was to develop the tools to study the effects of (i), (ii) and (iii) 
separately. In fact, (i) alone is modified by switching from the one-step scheme to the two-step 
scheme, the effect of (ii) can be isolated by substepping and that of (iii) by taking Beither fixed or 
linear in time (equation (16)). 

Notice that (iii) and (iv) do not affect steady solutions. For this reason we begin with a 
stationary problem. 

For the results to be presented hereafter, if nothing is explicitly said, it must be assumed that the 
standard LGM was used (no substepping, one-step scheme, Bfixed). 

5.1. The lid-driven square cavity 

The problem is to find the steady state 2D flow inside a unit square cavity with the boundary 
conditions 

Q2(x1 =o, x , ) = Q 2 ( x 1 =  1, x2)=&(x1, x ~ = o ) = 9 2 ( x , ,  x2= 1)=0 

for a fluid with unit density. The Reynolds number of this flow is defined as Re = l/p. We solved 
this problem for Re= 100 and 400 with the mesh shown in Figure 5 (1003 unknowns) and several 

Figure 5. Finite element mesh for the lid-driven square cavity problem 
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time steps. In Figures 6 and 7 we plot the profiles of 9, along the vertical centreline for both Re as 
compared with a reference computation made on a 40x40 mesh (3803 unknowns) with a 
Galerkin method. Also included are the results at Re=O (creeping flow) to allow for comparison. 
Clearly, the steady solution depends on At. As previously mentioned, this may come from (i) or (ii) 
above. We thus redid the calculations with substepping but no improvement was noticed even 
with N P  = 8. From this we conclude that the first-order approximation of the material derivative 
in equation (6) is responsible for the errors arising from time discretization. A cure for this, 
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Figure 6. Profiles of horizontal velocity along vertical centreline at Re = 100: effect of time step 
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Figure 7. Same as Figure 6 but at R e = W  
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allowing larger time steps to be used, is the two-step scheme (equation (7)).  In Figures 8 and 9 we 
compare the profiles obtained at  Re= 100 and 400 with At=O1 by both schemes. The improve- 
ment is clear and computing times increase only slightly since the geometric search is rendered 
inexpensive by the algorithm of Section 4.2. 

We now turn to the study of unsteady flows so as to complete the picture. 

STEP4 I ( I  -step) 
SIP4 I(2-step) 
REFERENCE 

N x 

v t  
Figure 8. Comparison of one-step and two-step schemes at Re = 100 

cu x 

I 0 ,  

0 80.- 

0 6B-- 

0 40- 
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STEP4 I(2-step) 

- REFERENCE 

VI 
Figure 9. Same as Figure 8 but at Re=400 
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5.2. Vortex shedding behind a rectangular cylinder 

We consider here the 2D flow past a rectangular obstacle of a fluid with unit freestream 
velocity, viscosity p and unit density. Re is again l/p, since we have assumed the obstacle to have 
unit width. Adherence conditions are imposed at the obstacle, the exit (right) is traction-free, a 
uniform profile is imposed at the inlet (left) and symmetry is assumed at  the top and bottom 
boundaries. No mass forces are present and also no perturbation is needed to obtain an 
oscillatory flow with vortices periodically leaving the obstacle. A typical dimensionless number 
for comparison is the Strouhal number ( S t ) ,  which with our definitions equals the frequency of the 
shedding. 

It is most interesting to make the rectangle have an aspect ratio (length/width) of two. For this 
geometry S t  is seen to increase monotonically with Re in the range 60<Re<400 from -0.10 
to -0.17. This sensitivity allows a rough evaluation of the accuracy of the results by com- 
paring computed St with reported values. 

Figure 10. Triangulations used for vortex shedding behind a rectangular cylinder: (a) RECT1; (b) RECTZ 
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We performed this simulation on the meshes shown in Figure 10. Some information about 
them can be seen in Table 11. Mesh RECTl is dense only around the obstacle, to capture 
boundary layers, while RECT2 allows better modelling of the vortices. 

Our first observation was that mesh RECTl is inadequate to simulate the flow at Re> 100. St 
for Re=80 was 0.104, which lies within the reported range, but at Re= 150 it had only moved to 
0.1 10 and at Re= 300 it even lowered to 0.109. These results could not be improved by reducing 
the time step and thus the errors mainly come from spatial discretization. 

Mesh RECT2, on the other hand, allowed a thorough analysis of the time discretization. A 
comparison of our computed St with experimental valuesI4 can be seen in Table 111. We will focus 
on the case Re=300, which exhibits a strong dependence on At  that cannot be removed by 
substepping or by applying the two-step scheme (see Table 111). We switched from taking $fixed to 
the linear approximation of equation (16), keeping the two-step scheme and A t = 0 2 5 .  With this 
choice the computed St was 0.155. These results confirm that when the velocity field vanes rapidly 
with time, tracing back the particle path lines with frozen velocities can be an important source of 
time discretization errors. 

Table 11. Some information concerning meshes RECTl and RECT2 
~ ~ 

Pressure Pressure Velocity Velocity 
Mesh elements nodes elements nodes Unknowns 

RECTl 574 329 2296 1232 2793 
RECT2 722 403 2888 1528 3459 

Table 111. Numerical Strouhal numbers obtained with mesh RECT2 

Step=0.1 Step=0.1 Step=0.25 Step=0.25 Experimental 
Re (two-step) (one-step) (two-step) (one-step) (Reference 14) 

~ ~~ ~ 

80 0.113 - - - Q 10-0.12 
150 0.126 0.127 0.124 0.122 0.1 3-0.15 
300 0.137 0.134 0126 0126 0.1 5-0.1 7 

STREAMLINES 

Figure 11. Plot of instantaneous streamlines near the obstacle at Re=300 (mesh RECT2, At=O-25, two-step scheme, 
6 linear) 
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Figure 12. Same as Figure 1 1  but for pressure contours 
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For completeness we also include instantaneous plots of streamlines (Figure 1 l), pressure 
contours (Figure 12) and nodal velocities (Figure 13) as obtained with the last computation. 

6. CONCLUSIONS 

We have presented a Lagrange-Galerkin-based method to solve the unsteady Navier-Stokes 
equations. Several difficulties that appear in the computation of the right-hand side have been 
given satisfactory solution, in such a way that non-trivial problems can be handled on small 
computers (most of the examples were run on VAX 11-780 and MICROVAX I1 models). To allow 
for comparison, we report a typical CPU time of 6 s per time step on a CRAY XMP-24 for mesh 
RECT2 (3459 unknowns). 

An analysis of the effect of the time step led us to propose a two-step scheme with second-order 
approximation for the derivative along path lines. This modification appears to be effective in 
steady problems. Its extension to transient problems requires some additional care, since accurate 
particle tracking seems to dominate the time discretization error. The velocity field should not be 
frozen at the last computed value as is usually done, but rather approximated linearly in time for 
our scheme to remain effective. 

Our experiments also reveal a mesh-dependent numerical viscosity introduced by the method. 
This should be kept in mind for high-Reynolds-number simulations to be effective. 

ACKNOWLEDGEMENTS 

The authors acknowledge the contributions of Jorge Pierini and Marcel0 VCnere to some topics 
of Section 4. Computations on mesh RECT2 were performed on the CRAY XMP-24 of the 
Alabama Supercomputer Network. Our thanks are also due to one of the unknown reviewers, 
who detected an error in one of the original figures. 

REFERENCES 

1. V. Girault and P.-A. Raviart, Finite Element Methodsfor Naoier-Stokes Equations, Springer, Berlin/Heidelberg, 1986. 
2. 0. Pironneau, ‘Finite elements for flow problems’, in V Escola de M a t e d t i c a  Aplicada, Lab. Nac. Comput. Cientifica, 

3. F. Thomasset, Implementation of Finite Element Methodsfor Naoier-Stokes Equations, Springer, New York/Heidel- 

4. J. P. Benque, G. Labadie and J. Ronat, in T. Kawai (ed.), Finite Element Flow Analysis, North-Holland, Amsterdam, 

5.  M. Bercovier and 0. Pironneau, in T. Kawai (ed.), Finite Element Flow Analysis, North-Holland, Amsterdam, 1982, 

6. J. Douglas Jr. and T. F. Russell, SIAM J .  Numer. Anal., 19, 871-885 (1982). 
7. K. W. Morton, A. Priestley and E. Siili, Math Modell. Numer. Anal., 22, 625-653 (1988). 
8. J. Cahouet and J.-P. Chabard, Int. j .  numer. methodsfluids, 8, 869-895 (1988). 
9. V. Akman, W. R. Franklin, M. Kankanhalli and C. Narayanaswami, Comput. Aided Des., 21,410-420 (1989). 

Rio de Janeiro, Brasil, 1985, pp. 309-383. 

berg/Berlin, 1981. 

1982, pp. 295-302. 

pp. 67-74. 

10. S. Pissanetzky and F. G. Basombrio, Int. j .  numer. methods eng., 17,231-237 (1981). 
11 .  R. A. Finkel and J. L. Bentley, Acta Inform., 4, 1-9 (1974). 
12. A. Bermudez, J. Durany, M. Posse and C. Vazquez, Int. j .  numer. methods eng., 28, 2021-2039 (1989). 
13. A. Bermudez and J. Durany, Math. Modell. Numer. Anal., 21, 7-26 (1987). 
14. A. Okajima, J .  Fluid Mech., 123, 379-398 (1982). 
15. Y. Yoshida and T. Nomura, Int. j .  numer. methodsfluids, 5, 873-890 (1985) 


